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A solution of the problem of shaping (Sect. 1) of a number of three-dimensional 
beams is given in the form of asymptotic expansions. The results are compared 
with exact expressions which determine the shaping electrodes for a plane flow 
along circular trajectories (Sect. 2). From the paraxial approximation for the 

electrostatic beams, cases which satisfy the conditions of a full spatial charge 
on the emitter, without disturbing the regularity of this approximation (Sect. 3) 

are selected. Quasi-axially symmetric beams (Sect.4) and a quasi-~lind~cal 
domain of arbitrary section (Sect. 5) are considered. 

The hydrodynamic theory of intense beams of charged particles represents one 

of the branches of the mechanics of continuous medium. However, the asymp- 
totic methods, although used widely and for a long time in other branches of 
mechanics, began to find application in this field only recently. The inverse 
problem or the problemof synthesis which appears when a system with desired 
charachteristics is constructed, consists of two parts: the internal problem, which 

deals with solutions of the equations of the beam, and the external problem, 
connected with determining the shaping electrodes which provide the realization 

of the computed flow. The Cauchy problem for the Laplaee equation represents 
the mathematical expression for the latter. For the solution of the internal pro- 

blem for narrow beams the asymptotic method of the extension or the narrow 

strip type [4,5] have been successfully used in (l-31, although the study of the 
problem of shaping was complicated by the existence of singularities at the flow 
boundary. An approximate solution of this problem with singularities present in 
the Cauchy conditions based on the multiscale and factorization method, is gi- 
ven below. 

1. FormuIatIoa of the WbIam. In the systemz’ (i = 1, 2, 3)with a metric tensor 
gik, g = det g4.t the Laplace equation has the following form: 

5 ( J;Bfk$) = 0 (t,k = I, 2,3) 

Here the potential and its normal derivative on the surface 2, separating the region 
9, occupied by the charges from the region free from the charges are both assumed 

known 

For the complex, spatially heterogeneous beams of sufficient complexity, the Cauchy 
conditions can be obtained in two ways: (I) as few exact solutions of the equations of a 
beam in S2, or (2) the paraxial approximation solutions. The geometrical complexity 
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Problem of shaping of spatially inhomogeneous beams of charged particles 6.05 

of the problems under discussion makes it practically impossible to solve themexactly. 

Therefore this study will be conducted within the limits of asymptotic approach. We 
shall construct a solution in a narrow strip near a sufficiently smooth axial curve r = 

= R (Z), characterized by its curvature fc (I) and its torsion x (Z).. 
Estimation of the order of the expansion terms is aided by inlmducing an order-of- 

smallness index p, which is inserted wherever a small parameter l.t*, appears on chan- 
ging to dimensionless quantities. The latter parameter represents the ratio of the width 

of the strip a, to the charachteristic longitudinal dimension L,. In the course of sol- 

ving the external problem both the curvature and the torsion of the axial curve are ass- 

umed to be the order of p i. e. @, and l.tx. In solving the beam equations, the parax- 

ial approach [3] consists of expanding the functions sought into power series in the small 

parameter a,, the latter charachterizing the narrowness of the region D and its error is 

of the order of Ebb. In every real problem it is possible to establish a reiation between 
E and p,e. g. l.& = e’/g, which permits, bearing in mind the error of the solutlort ln 

Gi to determine the number of terms in the expansion for the external problem 

(1’.3) 

which will provide the prescribed accuracy. Passage to the dimensionless coordinates 

(extension) is not essential and therefore instead of e, ,and l.&, we can use symbols. e 
and p provided that ln the final formulas they are taken as equal to unity. 

It is known that the investigation of flows issuing from the emitting surfaces, the 
Cauchy conditions on 2 are irregular functions if the initial velocity is zero. Several 

singularities may appear. The simplest example is a branch singularity (v N 1’13 whi- 
ch corresponds to an electrostatic flow under thecondition of full spatial charge. In the 
following we shall be concerned mainly with such singularities. 

Quasi-one-dimensional asymptotic expansions of type& 3)shown in [3] or the closely 
related series in powers of the coordinate normal to 2 [S, 71 become nonuniform on 

approaching the singularity. To construct expansions (1.3) which are equally usable 
over the entire strip, we must select the singularities correctly. This can be done by 
introducing an additional variable similar to the coordinate intended for describing the 
basically two-dimensional distribution of potential near a singularity (multiscale method 

[SD. Thus, 1 is replaced by two longitudinal coordinates z and &and the index lt 
precedes the derivatives with respect to L 

As L describes smooth and slowly changing functions, it is convenient to call it the 
“slow” coordinate in contrast to the “fast” variable z. In the final formulas we must 

set 1 =z=L, 

2. The aiuping of A plane flow with circular trajectori~ The equations of beam 
for this case were solved in [S]. The problem is that of solving the Laplace equation. 

b@os + &~i&jY I 0, 0 I In R (2.i) 

which satisfies the following conditions when o = 0: 
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Here R, sj are the polar coordinates. The problem (2. l), (2.2) has the following exact 
soluticms lo 

rp = Re V(0) + Im F F 0) dr, w=$+ia 
; 

(2.3) 

The expansions given in [9] for the integral appearing in (2.3) become unsuitable near 
the singularities($ = 0, i2O”)of the functions (2.2), while !JO] gives the equipotential 

surfaces constructed by integrating the ordinary differential equation of the equipotential 

To obtain the singularity in its simplest form, we Supplement “P with another angular 

variable fj and factorize the conditions (2.2) 

Y=(ain G $p=(G 9)%,.4(Y), F&---V, A(Y)=(a~~~ (2.4) 

The variable 9 is identical to $ and is only used to describe the singularity, The 
factorization yields the irregular part m its simplest form, and the function A (Y) is 
regular for 0 <Q < 6Oq.i. e. in the region to which we confine our investigations by 
virtue of the symmetry of the Cauchy conditions with respect to the ray 9 = 609 Equ- 

ation (2.1) then becomes 
a% a2q -=- 
8crl+ a92 

azcp 
2P $&-r a\r (2.5) 

Writing the solution in the form (1.3) we obtain the following expressions for q(n): 

(2.6) 

The formulas (2.6) yielded seven approximations, including v (7). Figure 1 gives some 

idea about the region within which the knowledge of the potential leads to a complete 
solution of the problem of shaping; the region is bounded by the rays J, = 0”and $ = 60” 

and the zero equipotential when R > 1. For q - 1 the relative error was found to be 
on = I 1 - (P,, / qcxl % , where cPn is the potential of the n- th approximation and qe+ 
its exact value. At the points farthest away from the boundary, the position of the 
zero equipotential is used to estimate the accuracy. It should be noted that although 
the singularity at the coordinate origin was not taken into account in the expansion 
(2.6), the expansion should be regarded as sufficiently satisfactory. Using (p(,) it was 
found possible to compute the potential in the region O.igR < i with an error not ex- 
ceeding 1% and to obtain practically exact values for R > 1 . In the strip 0.6 < R (5 
< 1.4 , v. gives a solution with an error of less than 2% and qa less than 0.5%. For 

vPr’Ps.the errors in the values of the zero equipotential coordinates are: 

J, = 600, d, =i il.G%, da = 8.8%; 9 = 40’, 6, = 8.8%, 6s = 6.6%; 9 = 20”. 
h, = i.7%, 0s = 0.07%. 
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It can be expected that the approximate approach applied to physical problems.of_the 
same type, will produce errors of the same 

2 order for different rpoblems within the same 

class. 

3. Study of the purxlrl equtknu of the 
be&m md selection of the rfngululty. We 
have noted above that the solutions, determin- 

1 
ing spatially inhomogeneous flows of suffici- 
ent geometrical complexity can be obtained, 

almost exclusively, within the framework of 

the paraxial approximation; the construction 
of this approximation is given in 1333 for axial 

beams. Here we shall only consider the sol- 

utions for an electrostatic flow, corresponding 
0.6 I 7.4 to almost homogeneous transverse density dis- 

Fig. 1. 
tribution. The approximation is formulated 
in the coordinates I, S, q, connected with 

the rectangular coordinates by 

r = R (0 + s (0 s + q (I) q (3.0 

where I is the arc length of the axial curve, 9, and q are the normal and blnormal 
unit vectors. The trajectoriesE = con.$, q = const are given by the formulas 

a = a (0 E + B (0 9, Q = P (I) E + y (I) rl (3.2) 

where E, ‘q are the initial values of transverse coordinates on the surface of the emitter. 

The expansion of the potential in the domain filled with charges corresponding to this 
case has the form 

9 = t/s&V (1) + e-‘/?I% +. ‘/,V (3kY - x%9 - x’q%) + ‘/*W&y+ 

+ Y,,sq + 1/zy44qa, D = av - Blr 

4yT,, = d’v - p”p - 2xv (p-v - v-p), DY,, = p”a -a”@ - 
- XV (v’a - dv + p’p -. p’p) 

D&l = $‘a - p,*“a - 2xV (a’/3 - p;C), d = Vda / dl (3.3) 

In these formulas k = k (Z), x = x (I) is the curvature and the torsion of the axis, 

V = V (I) is the axial longitudinal velocity, e is the index of smallness governing 

the relative width of the beam and functions a, /3, p, y, k, x, V are connected by 
the relations 

P ‘v V’ = dV 1 dl 

D” 

B ,;;‘;; “;” r,“‘p ;;;;“u, 

- 2’(a*v’ _ ’ ’ a $1 ” = J/V, J = const (3.4) 

Within the limits of approximation of (3.3), an emission with zero velocity can take 
place only from a flat source. In [1] the rectangular coordinates i and 5,related to 
the trajectories 5 = const are used to construct the paraxial approximation for an axi- 

symmetric flow with a rectilinear axis. The conditions of thermal emission can be 
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aatirfied on the curved surface 5 = 0. We note that the method of deformed coordina- 
tes 153 implies the necessiry of constructing the asymptotic expansions for the problems 

with singularities situated at the surfaces in terms of the curvilinear coordinates related 
to the charachteristics (in this case to the trajectories). Thus we extend the analysis to 

include the curvilinear emitter by replacing the coordinates I, s, q with the coordina- 

tes 6, E, rl 

6 = 1 i- 1/rE-2 ((?,a~’ + 2Q.q~ C Qqq?') 9 a' = da/d1 (3.5) 

DQ .a = a'v - p'p, DQIp = p’a - a’p, DQ,, = v’a - p’P 

Deformation of the coordinate 1 in accordance with (3.5) and with the accuracy of up 

to E’ censures the selection of the singularity in the expansion (3.3). 

v = ‘/svt (E-’ + 2E-‘kS + (3k2S2 - X2$ - g*“) + D-l [&I - 
(3.6) 
_ 

- 2x (p’v 
p”p 

- Y’ll.)W + 20-l Q3”a - a”f3 - x (v’a - cdv + fi’p - j.&‘fi)] x 
xsq + D-l Ivh - p”fJ - 2x (a’/3 - @‘a)] q2} . . ’ 

Since the longitu- 

dinal coordinate is only weakly deformed, it can be assumed that all the function; of 
I?, except’ V,remain. after the passage from I, s, q to 5, E, ?J the same functions of 

the new longitudinal coordinate 5. For s.and q in (3.6) we should use formulas (3.2). 
We note that for x # Othe system I;, &, p is no longer orthogonal. 

If the em%tting part of the start surface is bounded by a closed contour E = E (t) 
and 7 = rl (t), then the boundary of tin fIow is defined by the following parametric 

equations: 
.s = a(5) E (Q + B (5) r) (t)t (7 = I-1 (C)E (t) + v (5) tl (t) (3..7) 

Expansion (3.6) is regular over the whole region including the emitter, provided that 
v’is the only irregular function and that the determinant D does not approach zero any- 

where. Let us assume that these conditions are fulfilled; then, with emission limited by 

a spatial charge, we obtain the following expressions for potential and the field at the 
boundary and for the axial velocity: 

cp = t;‘/S’ @ (6, 0, &p/as = C’sE{C, t), V = f’/a W (t;) (3.8) 

Let the functions x, a, p, l.&, v,which define the shape of the beam be chosen so,that 
the first relation of (3.4) is satisfied. Then V can be found by integration of the second 
equation of (3.4). Substituting (3.6) in (3.4) and replacing 1 by t, we find 

Dc2W (WV” + W2) + (“&D 5 + D’C2) WV’ + 
+ 12/,D + 2 (It2 + XT) DL2 - 2 (a’v’ - 0’~‘) 5” + 2/sD’c + 

+D”~21W8=J, W’=dWldr, (3.9) 

For~=Owehave(a=v=1,~‘=p=O,D =I) and the following conditions 
necessary for the integration of (3.9) 

6 = 0, w = ($J’8, i+” = - & q “‘0’ 
( 1 

(3.10) 

The value of the derivative IY’given in (3.10) ensures that the function is regular and 
follows from the expansions given in pl]; J denotes the density of the emission flow. 

Within the limits of the considered approximation, this density of flow must be homo- 

geneous. The start surface is defined by the equation c = 0 and, as we can see from 
(3.5) it represents a paraboloid approximating any sufficiently smooth surface with the 
accuracy of up to es . 
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The numerical integration of (3.9) does not present any difficulty and can be perfor- 
med using a uniform interval commensurable with the width of the beam. Seven funct- 
ions CL, p, 11, v, k, x,’ V are related by only two relations (3.4). This makes the par- 

axial approximation very flexible, especially for constructing three-dimensional flows. 

4. shrpfllg of quui~rxis)VnmaUic b~m#, Quasi-cylindrical coordinates I, p, 6 are 
connected with I, s, Q given in (3.1). by the relations 

s-=pcos6, q=psin6 

The metric on 1, p, 6 is given by 

dra = [(I - kp cos fQ2 + x2p21 dla + dpa + padO + 2xp’dldft (4.1) 

The determinant of the metric tensor is 

R = 1 gik 1 = (I - kp COS Q)l pa 

The Laplace equation in quasi-cylindrical coordinates has the form 

a’cp _ 2* a=‘p 
a= ala6 + $ (1 - 3icp cos 6 + 2k2p’ cos’d) !$ + 

+(1-kpcosb)2a$+ 1X_kPk’m~e~+~(i-kpeos6- 

x’p” - 
1 ) 

~++[(1-kpcos0)2+x2p2]$=0 
-kkpcos6 a6 (4.2) 

To obtain the singularity we must use the relations (1.4). The smoothness of the 
axial curve means that k = /c (L), x = x (L).We seek the solution in the form 

cp = C cp(n)p”, 9 (n> = 2 Pnp CO9 p6 + YnP sin pit) (4.3) 
n=o P=o 

Then the functions (I),,,, and ‘Ir,, will satisfy the equation 

d2.Y _2++~+*_$s,,=T,, 
fl;? (4.4) 

For a plane axial curve, we have x = Oand 

+ (1 + &)3 Sn-n. p-21 + + (P i- 2) (P + 1) &I-2, pt2 + -+ Pwl-3, p + 

-f- + (p - 2) iv - 1) &l-2, ,-a) - 2 &S”-1, p - & &-I, p 

Gip” = 1. i = 11, S, I= O,,; 8iP’r = 1, i = p, S,,, = ‘I’,, (!t.S) . 

When .X =/= 0 the right hand sides of (4.4) assume a more comdex form, as the func- 
tions (Jpnp, ‘Ir,,,cease to be independent. Additional terms in 3’1p, TzP are given 
below without separating the different scales in / 

ATIP = &2xp-&& 
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The upper sign corresponds to the case A’,,,= Ynp, and the lower sign to S,, = 
= @,,,,The solution of Eq. (4.4), when the Cauchy conditions are given on the bound- 

ary 
P = Pe (0, .I = I, (0 (4.6) 

is done by the Riemann method. The Piemann function G (h) is a hypergeometric 
function pl], which can also be expressed in terms of a Legendre function 

G = F (l/s f p, ‘J? - p; 1; V = +I, (v) 

I.=- (P - PCY + (1 - v 
4PPY--- ’ 

v=l _ 2h = P2 4 PC2 + (2 - W 
XPP, 

(4.7) 

Here pc, t!, are coordinates of the observation point at which the value of s,,, is comp- 
uted. The symbols given here are explained in greater detail in nl]. If S,,, S,, are 
the values of the function and its normal derivative at the boundary u = 0 

1 + ip = 4 (4 + Me (4, w-u+iv 

Sl O-0 = sow as /au lDcO = s,, (t) (4.S) 

the solution of problem (4.4). (4.8) is given by 

s = lb { [y]” So (io) + [ [(+)” (S,, +& So) F (++ p, &-- p, 1; A,) _ 

-(~-P~)~~-p~a~~l~-~la~+ [I.-z]a)P(~+p,+- 

The functions so, s,.,, pe, I,, a = ,dp, I dt, f3 = dl, / dt: have 5 = u + i5; 

p = p (IL, r), 1 .= 1 (u, u). as their argument. Formula (4.9) will be used as a basis 
for further specialization and simplification. 

It can be shown that for electrostatic flows with emission bounded by a spatial charge, 

the flow boundary is a regular curve. However, in more complex cases (magnetic field; 
temperature-limited emission etc.) both the boundary and the Cauchy conditions will 
be determined explrcitly in terms of functions with singularities the charachter of which 
will not be fully described by the simplest power relationships given in Sect. 3. 

A noticeabIe simplification of the formula (4.9) can be achieved by considering the 
electrostatic beams with regular boundary regarded as a quasi-cylinder, the radius of 
which changes only on account of the slow coordinate L. 

4.1. The quasi-cylindrical boundary is given by the relations 

P = Ps 0) = PO (L), s = 20 (t) = t (4.iO) 
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In this case 

s+ip= w + iP0 (~3, a (4 = 0, g (t) = I 

P k u + PO (L), 2 c u, 10 c= u + iv = I + 1 (p - pa) 

Taking into account (4.10) and (4.11) we obtain in place of (4.,9) 

(4.11) 

S =[?1”’ Re,so(w),+~ (($)” P (++p, &p, i; X,)x 

x Re S,,(t)+ 2po 
[ 

i so1;;1- (+-pl) p’-2p;(;$--1 x 

XP -P, 2; he) Re SO ({)I da- -$ ( da 5 r’h x 
m 0 

XP ( f ;t ?‘e +--PC 1; A) Re?” (6, r)dr, T (5. r) = T (2, p) Iz_r. it (4.12) 
, 

x, = (* - P) (Q + P - 2po) 

4Ppo ’ 
k = (0 - pay - (r - p)Z 

4rP 
t=z+i(a-po) 

It is clear that arguments I and R, have become real and that p. (L),which is responsible 
for the geometry of the flow, is not affected by the differential operators with respect to 

the fast coordinates. When the boundary is a real cylinder, the expression for the solution 

in quasi-cylindrical coordinates 1, p, 6 is obtained from (4.12) when pa (L) = i. 
4. 2. Quasi - conic a 1 bound a ry in quasi-cylindrical coordinates. A conical 

boundary in the 1, p, 6 coordinates is the simplest example of the surface with a singu- 
larity, for which the relation (4.10) and the solution (4.12) cannot apply. It is clear 

that the introduction of a supplementary variable z will enable us to consider e. g. ‘the 
‘flows the boundary of which is almost conical near the coordinate origin and changes 

into a quasi-cylinder at some distance from it 

P = s (i -t.L)” PO (L), p. (0) = conet 

Let us introduce the quasi-spherical coordinates r, fl 

P Z s’ + ss $1 $, 6 y arc tg (P I 2) (4.13) 

We define the quasi-cone in Z, L, p, 6 by the following parametric expressions: 

p = p,(t) = k’sin 00 H(L) = a(t), i = zc (t) - cr co9 00 = p (t) (4.14)’ 

Setting R (0) = 1, we find that ,f& has a meaning of the angle of the cone, tangential 

to the quasi-cone (4.14) at the coordinate origin, Substitution of (4.14) into (4.9) 
leads to the following result: 

XF ( 1 -++r,y-p,~;~o)_ ! 1 &l C(L) cosenco+---(~& 
2 [I? sin 0~4 (17, L.)]‘/a 

Re [e’E’2S0(()] X 

XP ( 1 ++ Pv -j--P, 1:h)dq 
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h, = 
c (L) (cos v - cos E) C(L) [cos (v -q) - cos 41 
,2R sin %A (v, L) , I.=- 2A~q,L~A~a,L~ sw=u+ivp5=u+C 

II = In [r / C(L)], v = arc tg [(tg 9 - Rtg &J / (1 + Rtg 8, @)I 

T (5, q) = T (14, v)~_+~, o+4, .4 (I, L) = sin I cos 8, + R co9 2 sin eO 

~3 (t, L) = ~09 z COJ eO - R sin 2 sin eO, c (15) = ~09 8, 4 III sir? eO (4.15) 

We see that the expression (4.15) is not more complicated than (4.12) and that k, and 
L are again real. WhenII (L) = i,we obtain a proper cone in quasi-cylindrical coord- 

inates and further simplification takes place. 

Until now, the Cauchy conditions for the functions S,, were assumed known. The 
value of the potential and of its derivative at boundary z of the beam can be obtained 

from the solution of the inner problem (see Sect. 4 for the quasi-cylinder) and may con- 
tain the small parameter E, specifying the narrowness of the domain occupied by the 

charges. Writing these functions in the form of series similar to (4.3). we obtain 

‘p Ic = v (& 6, L, a) = 2 V,” (t, 6, L) E” =? 2 vn (t, 6, L) p” 
n=o n==o 

acp/8uIc=R(tAL,e)= 2 F*yo,L)e”= 2 l?&%L)IL” 
7-0 ?a==0 

(4.16) 

V,, (t, 6, L) = 2 (6,,c cos p6 + %,,@sin p6), F, (t, 6, L) = 
P==O 

= 2 (fnpc ~0s P@ + fd sin ~6) 
p=o 

and we should use O&t, L)and fnp (t, L)for So and S,., . These can then be used to 
constructcomplete functionsv and F as it was done in pl]. This operation is justified 

when e. g. V and Fare taken from the exact solution. 
Let us note, that solution in the form of (4.9) apparently enables us to consider not 

only the simplest electrostatic beams when the emission is limited by a spatial charge, 

but also more complex cases when the boundary, although remaining near the axis, is 
connected with the fast coordinates in the manner different from (4.10) and (4.14). 
Here the power singularity need not be picked out in the functions Vand F for the 

purpose of constructing the algorithm and this operation is not as critical,as in the case 
of flows with arbitrary cross-section which will be considered below. 

Generally the deformation of coordinates as shown in (3.5). necessary in the inner 
domain including the boundary, becomes superfluous when the outer problem is solved. 

In the latter case therefore the problem reduces to changing the law of parametrization 
of the points of boundary p = Q~. (;) by means of the transformation 

5 (I) = l + ‘/sF’c,, (1) PI’ (I) (4. li) 

which introduces a correction into the right-hand side of (4.4). from IZ = 6 onwards. 
When a supplementary coordinate is introduced, the Cauchy conditions S,, s;., in (4.9) 

can be factorized in the manner analogous to (2.4). It can be shown that the second 
derivatives in (4.5) do not increase the order of the singularity and are compensated 
by a double integration in (4.9). Thus the corresponding principle of asymptotic 
expansion [5] is satisfied. 
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6, shaping quui-cyl!ndrlcrl berm8 of arbitrary or088 reotloa Let 

S = Se (tc 09 Q = Qe tt, 4 (5.1) 

be the parametric equations of the flow boundary weakly dependent on I? ; The deformed 
coordinate 5 is given on the surface 2 by the formulas (4.5) and (5.1). From the 
standpoint of the paraxial approach of Sect. 3, the inverse of this transformation is 

z=g- ‘/2e2 r Qaa (5) ~,a (t, 5) + 2Qspse (h 5) q&v 5) A- 6, (5) qrl (U)l; (5.2j 

The metric in 2, s, q is given by the relation p] 

dri = [(I _ ~;s)a + x2 (s” + qs>] dzs + asa + dq2 - 2xqdZds + 2=dldq (5.3) 

Let us perform the conformal mapping 

a + iq = s, (w, 5) + iq, (w, 0 w=u+iv (5.4) 

putting the surfaces (5.1) and the real axis u = 0 in the plane UV, in the 1:l corresp- 
ondence and pass to the coordinates z1 = 5, Z2 = U, d :^ n. Here 1 does not begin 
to deviate from 5 before the terms of the order of pL4. Within this accuracy the (5.3) 

assumes the following form 

clrr = girdzidei+c [(I - w2 + (xs + f&d2 + (X? - s,$l’aa + 
+ (s,u2 + s,,‘) (du2 + doa) - 2 [(xs + q,:) s,u + (x7 - Q) s,,] dud4 + (5.5) 

i- 2 I(= + q,f) s,u - (w --‘Q.) s,,] dvd5, Ifi% = s,u2 + s,02. s,, = ds / ~3 ZJ 

Here I;, x' are functions of 5 while. s, q are functions of u, u, 5, and are determined 
by the formula (5.4). The Laplace equation can be written in the metric (5.5). the 
latter enabling the correct grouping of terms of the same order of smallness. Let us 
separate the dependence on the deformed coordinate 5 into the fast and the slow 

dependence. 

All functions of (5.5) depend on 2, and the Cauchv conditions at the boundary 2 of 

the beam have in accordance with Sect. 3. the form 

“f IE = Z’V (t, 2, a), @/anIn = z*F (t, 2, e) (5.6) 

The ?t-th approximation function satisfies the equation 

2% (n) 
-+---T- au3 

“;;n) + f/g+, v, Z)w = T(n), T<O) = 0 W? 

For T (1), e. g. we obtain 

Solution of the Cauchy problem for Eq. (5.7) with conditions (5.6) on ~9 = Owill be 
sought [7] using the integral representation 
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1 cp e-P2 
z* & - 

s 
--dp r (-v) Jpt1 

(0) 

(5.9) 

in the following form: 
m 

cp(n> = @n(u* 
s 
(0) 

For a,, we obtain 

v, Z, P) @z&+ T (n> = f T, (u, v, Z, p) e+dp (5.10) 
(0) 

aw 
2 + $$ + bli;o (u, v, Z) pa@, = Tn ad 

(5.12) 

@)n jr-0 = 6(u,L,p) = ‘vr(;Lt;e) --$-, %I 
v=o 

=f(u,L,p) +&-& 

Using, the Riemann method to solve the problem (5.11) we obtain 

We 

the 

- ~df+L&W~}, Kn (4 VP P) = Jo (9 Tn 
0 

a e= - Pr, = -p”rcs e - s)’ _t (qe - q)*]‘/t, w = u + iv, 5 = u + iE 
(5.12) 

A = - pr = -.P.{CS (5,rl) - s (u * v)l* -I- [q (51 ‘I) - Q 04 4l”P 

require that the zeroth-approximation ~(0) satisfies the full conditions (5.6) on 

surface (5.3) and that the following appioximations satisfy the homogeneous cond- 
itions on.the same surface. Using the Lipschitz-Hankel integral we have 

cp (0) = z*ReV (w, z, e) .,J{P (& z, e) (2” + f,2)P/2 P_p_t (C3,) - 

0 

_ (8s - 8) p - (qs - q) a dP-” 
tza + r,s)‘-” / 9 --v(LZ,4}dL @,= v-&, c=u+i~ (5.13) de, 

When the emission is limited by a spatial charge, we have v = p = 4/3. The n-th 
approximation function cp(n) is given by the formula 

g(n) = - ~e-p’dpSdE”~fi,(5,rl,p)dli 
(‘0, 0 0 

(5-a) 

The contour integral in (5.14). has unfortunately no closed expression. The approach 
adopted in p2] in constructing the shaping electrodes for a conical beam should be 
used to obtain its estimate. We nofe that since 

dJ, / dx = -J,, dJ1 I dx = -J, I x f J, 
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all approximations will contain only Jo and Jt. Thus. in the first approximation, it i: 
necessary to know the integrals containing the products Jo (up) Jo (bp), Jo (up) 
J, (bp),,while in the second approximation the integral includes various cubic combin- 

ations of the Bessel functions. 

5.1. Toroidal beam of arbitrary cross section. Let us select a beam 

of required configuration out of a flow defined by an exact solution 181. This beam 
starts from a flat emitter in such a way that the 1, 6, q coordinate system with a circle 
as the axial curve@ = 1 / I?,, =const, x = 0)is found to. be orthogonal and related to the 
emitter and the trajectories; in this case the coordinates need not be deformed. The 
surface of the beam cylindrical in 1, s, q 

(5.15) 

In the I, ti, u coordinate system the metric is defined by the formulas 

We now assume with respect to the contour (5.15) that the quasi-cylindrical angle 0 
can be used to obtain a single-valued parametric representation. The potential and the 
normal derivative on u = 0 will then be given by __~~~._. ~.~. _ _____~~ 

PI c==o = V(2, L, 6) =-(4 z)‘! V(L,O,i 

1.16) 

z.= ‘/akt [i - ks, (fl)]“, P(@)=h’,/dCt 

In this case the right-hand sides of (5.7) and (5.11) can be written for any value of n 
as 

a@*-, 
+ 8s,u au 

a*?l-, 
+ ss,tJ av 1 - l”,“’ + s,,3 

mW2 
a#r_a (5.17) 

We note that the second derivatives with respect to the variables U, p appearing in 
Z’,, can be completely eliminated. 

As we noted before, the asymptotic expansions quoted are applicable throughout the 

strip of width p. However, when the geometry is sufficiently complex, the use of these 
expressions away from the emitter may be found inexpedient when we consider the vol- 
ume of the necessary computations. They can however be replaced by quasi-onedimen- 
sional expansions [3] or directly with series written in terms of the coordinate normal to 

the boundary of the flow 163. 
Use of the Cauchy conditions (Sect. 3) in the expressions given in Sect. 4 and 5 pro- 

vides a complete solution of the inverse problem of the theory of intense beams in the 
paraxial approximation. 
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PRESSURE OF A PLANE CIRCULAR STAMP ON AN ELASTIC HALF-SPACE 

WITH AN INDENTATION OR INCLUSION 
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An axisymmetric mixed problem of the theory of elasticity for a half-space 
with a hemispherical indentation of radius ,J < 1 is considered. The boundary 

of the half-space is acted upon by a plane circular stamp of unit radius, coax- 
ial with the indentation and covering it completely. There is no friction betw- 

een the stamp and the half-space. The problem is solved for three cases: the 
indentation may be empty, or filled with either a perfectly rigid, or a perfectly 
elastic medium. The solution is constructed in the form of series in terms of 

the homogeneous solutions of the mixed problem for a half-space, and the 


